Question 20, Final , FO7

Question 20, Final, FO7

20 Let A=
2 3
11

Which of the following gives the entry in the 2nd row and 1st column of A~1?
(a) -1 (b) 3 () 1 (d) -2 (e) 3
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Question 20, Final , FO7

Question 20, Final, FO7

20 Let A=
2 3
11

Which of the following gives the entry in the 2nd row and 1st column of A~1?
(a) -1 (b) 3 () 1 (d) -2 (e) 3

» [If ad - bc is not zero, the inverse of the matrix (i 2) is given by

_d  _=b
(adfbc adfbc)
_—c —a
ad—bc ad—bc
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Question 20, Final , FO7

Question 20, Final, FO7

20 LetA=

()

Which of the following gives the entry in the 2nd row and 1st column of A~1?

(a) -1 (b) 3 (c) 1 (d) -2 (&) 3

3

» [If ad - bc is not zero, the inverse of the matrix (i 2) is given by

_d  _=b
(adfbc adfbc)
_—c —a
ad—bc ad—bc

» Since2-1—1-3=—14#0, the inverse of the matrix (i i’) is given by

G2 -G 3
5 1 =2
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Question 20, Final , FO7

Question 20, Final, FO7

20 LetA=
2 3
11
Which of the following gives the entry in the 2nd row and 1st column of A~1?
(a) -1 (b) 3 (c) 1 (d) -2 (e) 3
» [If ad - bc is not zero, the inverse of the matrix (i 2) is given by
_d  _=b
( ad:cbc ad;bc )
ad—bc ad—bc
. . (2 3\ . .
» Since2-1—1-3=—14#0, the inverse of the matrix 1 1) isgiven by
CEIRNCR
1 - 1 —2

> The correct answer is (c).
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Question 21, Final , FO7

Question 21, Final, FO7

Calculate (A — B) - C.
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Question 21, Final , FO7

Question 21, Final, FO7

Calculate (A — B) - C.

0 1 —1 1
) (,1 ) ® <,2 1>
1 1 0 1

1-2 2-1 -1 1
» A-B=(3-5 1-0] =1|-2 1
0-0 2-1 0 1
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Question 21, Final , FO7

Question 21, Final, FO7

Calculate (A — B) - C.

0o 1 -1 1
(a) (71 ) (b) (4 1)
11 0o 1

-

1-2 2-1 -1 1
» A-B=|3-5 1-0] =(-2 1
0-0 2-1 0 1
-1 1 1 0 -1+1 0+1
» (A-B)-C=[-2 1 1 1) =|-24+1 0+1
0 1/,., 2x2 0+1 041/, ,
0 1
=|-11
1 1 3x2
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Question 21, Final , FO7

Question 21, Final, FO7

Calculate (A — B) - C.

0 1 —1 1
) (,1 ) ® <,2 1>
1 1 0 1

1-2 2-1 -1 1
» A-B=|3-5 1-0] =(-2 1
0-0 2-1 0 1
-1 1 1 0 -1+1 0+1
» (A-B)-C=[-2 1 1 1) =|-24+1 0+1
0 1/,., 2x2 0+1 041/, ,
0 1
=|-11
1 1 3x2

> The correct answer is (a).
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Question 22, Final , FO

Question 22, Final, FO7

22 Let

5 2
C:(géi), D=1{1 0].
2 1

Find the entry in the second row and first column of the matrix C - D.

(a) 10 (b) 4 (c) 7 (d) 17 (e) 0
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Question 22, Final , FO

Question 22, Final, FO7

22 Let

5 2
C:(géi), D=1{1 0].
2 1

Find the entry in the second row and first column of the matrix C - D.

(a) 10 (b) 4 (c) 7 (d) 17 (e) 0
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Question 22, Final , FO

Question 22, Final, FO7

22 Let
5 2
C:(g ; i) D=1{1 0
2 1

Find the entry in the second row and first column of the matrix C - D.

(a) 10 (b) 4 (c) 7 (d) 17 (e) 0

:(0~5+2~1+4~2 —>M:<1o —)

> The correct answer is (a).
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Question 23, Final, FO7

2 5
A:(? i) B=(o 2|, c=|1
1 -1 2

Which of the following statements is true?

(a) A~! does not exist. False, A~ does exist because det A =75 —2 =3 # 0.
(b) C- B does not exist. True, because C3x» and Bsx> do not have
compatible dimensions for multiplication.

(c) D - C does not exist. False, because D13 and Csx> have compatible
dimensions to calculate D - C.

(d) B - A does not exist. False, because Bsx> and Azx2 have compatible
dimensions to calculate B - A.

(e) (B — C)-Adoes not exist. False, because (B — C)zx> and Asx> have
compatible dimensions to calculate (B — C) - A.
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Question 24, Final, FO7

24 The following matrix is the payoff matrix for the row player in a zero-sum

game:
0o 1 2
-1 2 =2
-1 0 1

The payoff matrix has a saddle point; where is it?

(a) Row 1, Col 1 (b) Row 1, Col 3 (¢) Row 2, Col 3 (d) Row 3, Col 1 (e) Row 2, Col 2
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Question 24, Final, FO7

24 The following matrix is the payoff matrix for the row player in a zero-sum

game:
0o 1 2
-1 2 =2
-1 0 1

The payoff matrix has a saddle point; where is it?

(a) Row 1, Col 1 (b) Row 1, Col 3 (¢) Row 2, Col 3 (d) Row 3, Col 1 (e) Row 2, Col 2

» We look at the minimum in each row and the maximum of each column
and compare:

Min.
0o 1 2 0
-1 2 -2 =2
-1 0 1 -1
Max. 0 2 2
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Question 24, Final, FO7

24 The following matrix is the payoff matrix for the row player in a zero-sum

game:
0o 1 2
-1 2 =2
-1 0 1

The payoff matrix has a saddle point; where is it?

(a) Row 1, Col 1 (b) Row 1, Col 3 (¢) Row 2, Col 3 (d) Row 3, Col 1 (e) Row 2, Col 2

» We look at the minimum in each row and the maximum of each column
and compare:

Min.
0o 1 2 0
-1 2 -2 =2
-1 0 1 -1

Max. 0 2 2|

» The entry in row 1 and column 1 is the minimum in its row and the
maximum in its column, hence it is a saddle point.
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Question 24, Final, FO7

24 The following matrix is the payoff matrix for the row player in a zero-sum

game:
0o 1 2
-1 2 =2
-1 0 1

The payoff matrix has a saddle point; where is it?

(a) Row 1, Col 1 (b) Row 1, Col 3 (¢) Row 2, Col 3 (d) Row 3, Col 1 (e) Row 2, Col 2

» We look at the minimum in each row and the maximum of each column
and compare:

Min.
0o 1 2 0
-1 2 -2 =2
-1 0 1 -1

Max. 0 2 2|

» The entry in row 1 and column 1 is the minimum in its row and the
maximum in its column, hence it is a saddle point.

> The correct answer is (a).
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Question 25, Final, FO7

25  Roadrunner (R) and Coyote (C) play a game. They each have 4 cards,
numbered 1, 2, 3 and 4. They each display one card simultaneously. If both
numbers are even Coyote gives Roadrunner $1.1f both numbers are odd,
Roadrunner gives Coyote $1. If the numbers are neither both even nor both
odd, the creature displaying the higher number receives $1 from the other
creature. Which of the following payoff matrices gives the payoff matrix for
Roadrunner for this game?

c c
Card # 1 2 3 4 Card # 1 2 3 4
1 -1 1 1 1 T T T —1 -1
@) 2 —1 1 1 1 ®) 2 1 1o-1 -1
R 3 -1 -1 1 1 R 3 1 1 1 -1
4 -1 -1 -1 -1 4 1 1 1 1
c
Card # 1 2 3 4
© 1 10 0 T
2 0o 1 2 3
R 3 0o o 1 2
4 11 -1 -1
c c
Cad# | 1 2 3 4 Card # | 1 2 3 4
1 ) 1 1 T -1 -1 -1 -1
(@ 2 o -1 1 -1 () 2 1 R 1
R 3 0 0o -1 -1 R 3 —1 1 -1 -1
4 1 1 -1 -1 4 1 1 1 1
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Question 25, Final, FO7

25  Roadrunner (R) and Coyote (C) play a game. They each have 4 cards,
numbered 1, 2, 3 and 4. They each display one card simultaneously. If both
numbers are even Coyote gives Roadrunner $1.1f both numbers are odd,
Roadrunner gives Coyote $1. If the numbers are neither both even nor both
odd, the creature displaying the higher number receives $1 from the other
creature. Which of the following payoff matrices gives the payoff matrix for
Roadrunner for this game?

c c
Card # 1 2 3 4 Card # 1 2 3 4
1 -1 1 1 1 T T T —1 -1
() 2 —1 1 1 1 (6) 2 1 1 -1 -1
R 3 -1 -1 1 1 R 3 1 1 1 -1
4 -1 -1 -1 -1 4 1 1 1 1
c

Card # 1 2 3 4

© 1 T 0 0 T

2 0 1 2 3

R 3 0o o0 1 2

4 11 -1 -1




Question 26, Final, FO7

26  Rat (R) and Cat (C) play a zero-sum game with payoff matrix for Rat
given below. What is the optimal pure strategy for Cat for this game?

0 0 2 1
1 0 1 2
2 -1 4 6
- -2 1 -1 -2
1 —1 0 —5

(a) Col 1 (b) Col 2 (¢) Col3 (d) Col 4 (e) Col 5

[SYRETI
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Question 26, Final, FO7

26  Rat (R) and Cat (C) play a zero-sum game with payoff matrix for Rat
given below. What is the optimal pure strategy for Cat for this game?

1 0 0 2 1
2 1 0 1 2
3 2 —1 4 6
-1 -2 1 -1 -2
0 1 —1 0 —5
Max |3 2 1 4 6 |
(a) Col 1 (b) Col 2 (¢) Col 3 (d) Col 4 (e) Col 5

» We calculate the max. of each column and then choose the minimum of
these to give Col 3.
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Question 26, Final, FO7

26  Rat (R) and Cat (C) play a zero-sum game with payoff matrix for Rat
given below. What is the optimal pure strategy for Cat for this game?

1 0 0 2 1
2 1 0 1 2
3 2 —1 4 6
-1 -2 1 -1 -2
0 1 —1 0 —5
Max |3 2 1 4 6 |
(a) Col 1 (b) Col 2 (¢) Col 3 (d) Col 4 (e) Col 5

» We calculate the max. of each column and then choose the minimum of
these to give Col 3.

» The correct answer is (c).
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Question 27, Final, FO7

27  Catman (C) and Robin (R) play a zero-sum game, with payoff matrix for
Robin given by

1 2

30
If Robin plays the mixed strategy (.8 .2) and Catman plays the mixed strategy
<2> What is the expected payoff for Robin for the game?

(a) 1.4 (b)1.48 (c) 1.6 (d) 5 (e) 8
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Question 27, Final, FO7

27  Catman (C) and Robin (R) play a zero-sum game, with payoff matrix for

Robin given by
1 2
30

If Robin plays the mixed strategy (.8 .2) and Catman plays the mixed strategy

<2> What is the expected payoff for Robin for the game?
(a)1.4 (b) 1.48 (c) 1.6 (d).5 (e) .8

» The expected pay-off for Robin is given by the product:

(08 02) @ (2)) <:2):(0.8+0.6 1.6+0) (2)

— (14 16) (:2) — ((1.4)(0.6) + (1.6)(0.4)) = 1.48
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Question 27, Final, FO7

27  Catman (C) and Robin (R) play a zero-sum game, with payoff matrix for

Robin given by
1 2
30

If Robin plays the mixed strategy (.8 .2) and Catman plays the mixed strategy

<2> What is the expected payoff for Robin for the game?

(a) 1.4 (b)1.48 (c) 1.6 (d) 5 (e) 8

» The expected pay-off for Robin is given by the product:

(08 02) @ (2)) <:2):(0.8+0.6 1.6+0) (2)

— (14 16) (:2) — ((1.4)(0.6) + (1.6)(0.4)) = 1.48

> The correct answer is (b).

Annette Pilkington Solutions to Final Spring 2008



28  Suppose the payoff matrix for Robin, in a zero sum game with Catman,
is as in the previous problem:
1 2
G o)

If Robin plays the mixed strategy (.8 .2), which of the following mixed strategies
should Catman play to maximize his (Catman’s) expected payoff in the game?

@ (%) @ () @ (3) @ (5) @ (9)
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28  Suppose the payoff matrix for Robin, in a zero sum game with Catman,
is as in the previous problem:
1 2
G o)

If Robin plays the mixed strategy (.8 .2), which of the following mixed strategies
should Catman play to maximize his (Catman’s) expected payoff in the game?

@ (%) @ () @ (3) @ (5) @ (9)

> For each of the strategies for Catman listed above, (Ccl ), if Robin plays
2
(-8 .2), the expected pay-off for Robin will be
(0.8 0.2) G g) (‘1> - (14 16 (‘1) = (L.4ey + 1.667)

2 /]
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28  Suppose the payoff matrix for Robin, in a zero sum game with Catman,

is as in the previous problem:
1 2
30

If Robin plays the mixed strategy (.8 .2), which of the following mixed strategies
should Catman play to maximize his (Catman’s) expected payoff in the game?

@ (%) @ () @ (3) @ (5) @ (9)

> For each of the strategies for Catman listed above, (Ccl ), if Robin plays
2
(-8 .2), the expected pay-off for Robin will be
(0.8 0.2) G g) (g) - (14 16 (él) = (L.4ey + 1.667)

> Comparing the values for the strategies given above for Catman, we find
the minimum expected pay-off for Robin, which gives the maximum
expected pay-off for Catman.

(‘:1) 1.4¢; +1.6¢)

<°1> 1.4c + 1.6cp
1.4(0.6) + 1.6(0.4) = 1.48

(1> 1.4(1) + 1.6(0) = 1.4(min : correct answer is (d)))

0 1.4(0) + 1.6(1) = 1.6

(g_'g) 1.4(0.4) + 1.6(0.6) = 1.52
) 1.4(0.3) + 1.6(0.7) = 1.54
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__Question 20, Final , F07_Question 21, Final \F07 Question22.Final FOLL o
29  Rapunzel (R) and Cinderella (C) play a zero-sum game with payoff
matrix for Rapunzel given by
5 2
G 3)

Rapunzel wants to find the optimal mixed strategy, assuming that Cinderella
always plays the best counterstrategy. Which of the following linear
programming problems must she solve:

minimize xX+y maximize X+y
constraints x >0, y>0 constraints x >0, y>0
() x + 5y >1 (®) 5x +y >1
3x + 2y >1 2x + 3y >1
minimize xX+y maximize X +y minimize x+y
constraints x >0, y>0 constraints x >0, y >0 constraints x >0, y >0
(e) sxty <1 (d) xts5 <1 () Sxty > 1
2x + 3y <1 3x 4+ 2y <1 2x 4 3y >1
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29  Rapunzel (R) and Cinderella (C) play a zero-sum game with payoff
matrix for Rapunzel given by
5 2
G 3)

Rapunzel wants to find the optimal mixed strategy, assuming that Cinderella
always plays the best counterstrategy. Which of the following linear
programming problems must she solve:

minimize xX+y

maximize X+y
constraints x >0, y>0 constraints x >0, y>0
() x + 5y >1 (®) 5x +y >1
3x + 2y >1 2x + 3y >1
minimize xX+y maximize X +y minimize x+y
constraints x >0, y>0 constraints x >0, y >0 constraints x >0, y >0
(e) sxty <1 (d) xts5 <1 () Sxty > 1
2x + 3y <1 3x 4+ 2y <1 2x 4 3y >1

» The linear programming problem associated with finding Rapunzel’s best
mixed strategy is summarized in the form :
Minimize x +y subject to the constraints: x >0, y >0 and

« »(F 3za v
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29  Rapunzel (R) and Cinderella (C) play a zero-sum game with payoff
matrix for Rapunzel given by
5 2
G 3)

Rapunzel wants to find the optimal mixed strategy, assuming that Cinderella
always plays the best counterstrategy. Which of the following linear
programming problems must she solve:

minimize xX+y

maximize X+y
constraints x >0, y>0 constraints x >0, y>0
() x + 5y >1 (®) 5x +y >1
3x + 2y >1 2x + 3y >1
minimize xX+y maximize X +y minimize x+y
constraints x >0, y>0 constraints x >0, y >0 constraints x >0, y >0
(e) sxty <1 (d) xts5 <1 () Sxty > 1
2x + 3y <1 3x 4+ 2y <1 2x 4 3y >1

» The linear programming problem associated with finding Rapunzel’s best
mixed strategy is summarized in the form :
Minimize x +y subject to the constraints: x >0, y >0 and

« »(F 3za v
» The resulting optimization problem is :

minimize X +y
(o) constraints x>0, y >0
5x +y >1
2x + 3y >1
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Question 30, Final, FO7

30 If Rapunzel found that the solution to the linear programming problem
for Question 29 was
2 3
X = ﬁ7 y = Ey
what would her optimal mixed strategy be?
@ (53) @ (;3) @ (5-3) @ () @0
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Question 30, Final, FO7

30 If Rapunzel found that the solution to the linear programming problem
for Question 29 was
2 3
X = ﬁ7 y = Ey
what would her optimal mixed strategy be?
@ (53) @ (;3) @ (5-3) @ () @0

» The optimal mixed strategy for Rapunzel is given by

2 3
(n n)= (Xiy vary) = (l%j 2 1373 ) = (% %)
1 1 1 1
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Question 30, Final, FO7

30 If Rapunzel found that the solution to the linear programming problem
for Question 29 was
2 3
X = ﬁ7 y = Ey
what would her optimal mixed strategy be?
@ (53) @ (;3) @ (5-3) @ () @0

» The optimal mixed strategy for Rapunzel is given by
3 3 2 3
n 2=(G5 &)= (lTi 11—35) =(3 2)

» The correct answer is (b).
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